The International Federation of Head and Neck Oncologic Societies

² Head and Neck Oncologic Societies Current Concepts in Head and Neck Surgery and Oncology 2018

International Federation

www.ifhnos.net

The International Federation of Head and Neck Oncologic Societies

² Head and Neck Oncologic Societies Current Concepts in Head and Neck Surgery and Oncology 2018

Advances in Radiotherapy

International Federation

Sandro V Porceddu

Director, Radiation Oncology Research Princess Alexandra Hospital, Brisbane, Australia Professor of Medicine, University of Queensland

Role of radiotherapy in HNC

75% HNC patients benefit from RT

Post-operative

Definitive

Palliative

Barton MB et al Radiother Oncol, 2014

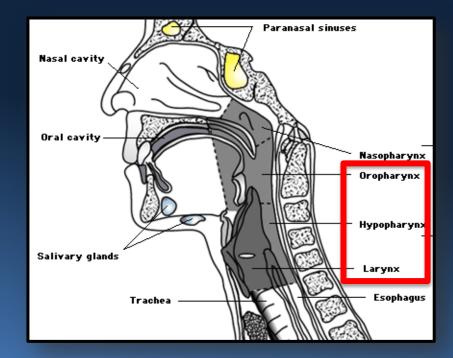
Progress over 30 years

- Improved locoregional control & overall survival probability
 - LRC 27% to 80% over 30 years 1
- Reduction in long term adverse effects²
- Superior QoL & patient reported outcomes³
- Transition from primary surgery to function preserving RT (pharyngolaryngeal disease)⁴

¹Overgaard J JAMA, 2014 ²Langendijk JA et al JCO, 2008 ³O'Sullivan B et al Clin Oncol, 2012 ⁴Gregoire V et al JCO, 2015

Advances

- Treatment intensification
- Treatment-related morbidity
- Radiotherapy delivery & image guidance
- Post-therapy assessment
- Biologic insights & de-escalation strategies
- Radiotherapy quality assurance
- Contouring consensus guidelines


Future advances

- Molecular imaging to identify tumour sub-volumes that may be targeted through dose escalation or targeted agent (dose painting)
- Adaption tracking of tumour or patient changes during treatment (MRI-Linac)
- Improved dose distribution (protons and heavy particle therapy)
- Concomitant immunotherapy

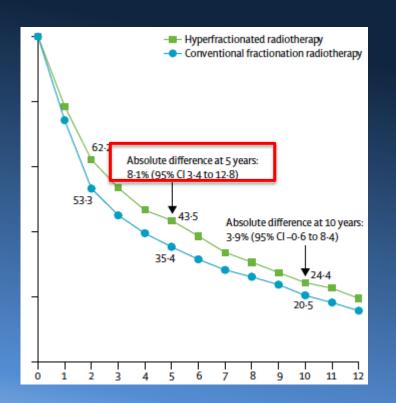
Role of radiotherapy in HNC

Post-operative

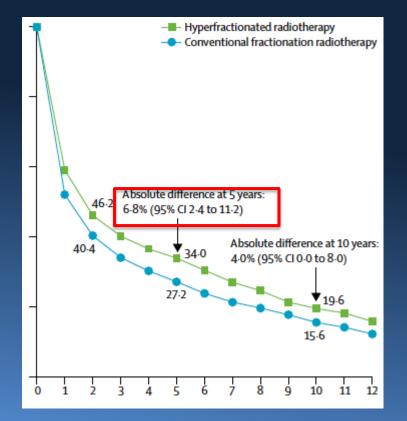
- Definitive
- Palliative

TREATMENT INTENSIFICATION

Meta-analysis conventional vs altered fractionation (MARCH)


- 15 randomised trials comparing conventional RT vs altered fractionation RT (6515 pts)
- Significant benefit in favour of altered fractionation at 5 years

 Absolute survival benefit of 3.4%
 Absolute locoregional control benefit of 6.4%

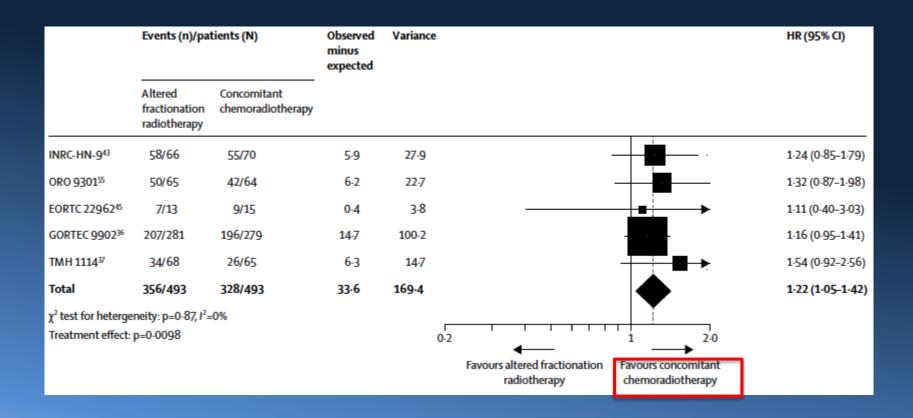

Bourhis J et al Lancet, 2006

Conventional RT vs Hyperfractionation

Overall Survival

Progression Free Survival

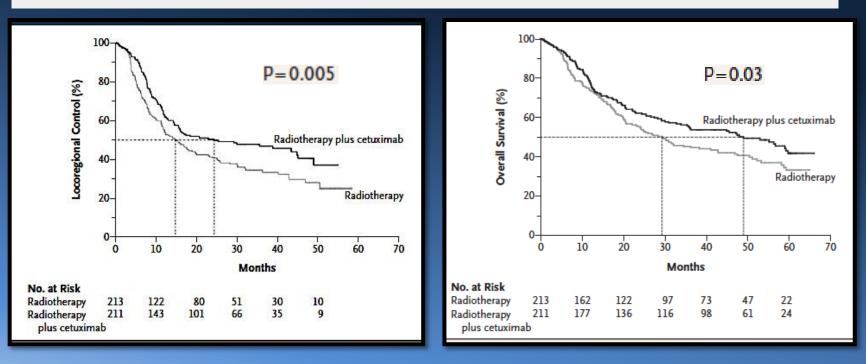
MARCH; updated meta-analysis Lacas B et al Lancet Oncol, 2017


Meta-analysis chemo-RT vs RT Phase III HNSCC Trials from 1965

T	herapy Modality	Absolute benefit at 5 years*	Risk Reduction	* P
Δ	All (N=17,493)	4.1 %	10 %	< 0.0001
	Adjuvant	2.3 %	2 %	NS
	Neoadjuvant	2.2 %	5 %	NS
	Concurrent	6.9 %	19 %	< 0.0001

*Relative to Conventional Local-Regional Therapy

Pignon & Bourhis Lancet, 2000


Altered fractionation vs chemo-RT

MARCH; updated meta-analysis Lacas B et al Lancet Oncol, 2017

ORIGINAL ARTICLE

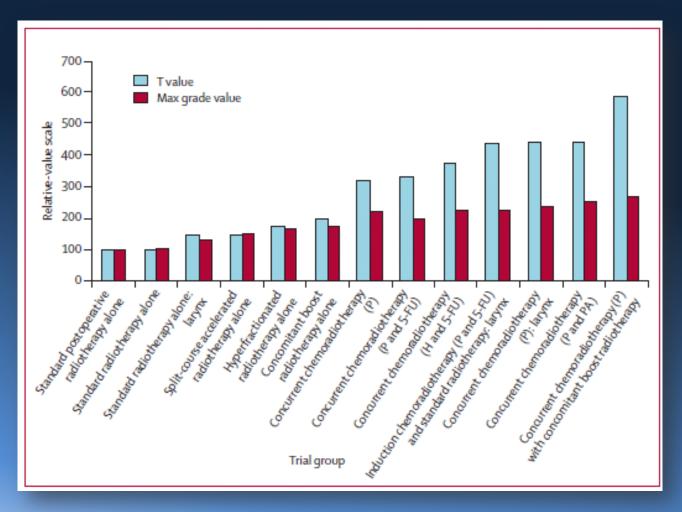
Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck

Bonner et al J NEJM, 2006

Treatment Intensification

Efficacy Outcome	RT	CETUX-RT	p-value
LRC median (mo)	14.9	24.4	0.005
PFS median (mo)	12.4	17.1	0.006
OS median (mo)	29.3	49.0	0.03

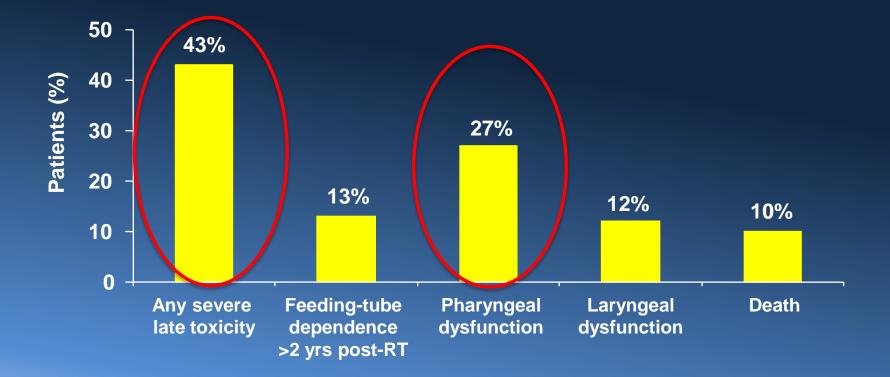
Bonner et al J NEJM, 2006


Treatment Intensification No increase in in-field toxicity

	Radiotherapy (N=212)			Radiotherapy plus cetuximab (N=208)			
	All grades	ades Grade 3/4 Grad		All grades	Grade 3/4	Grade 4	
Skin reaction*	200 (94·3%)	45 (21·2%)	3 (1.4%)	204 (98·1%)	73 (35·1%)	4 (1·9%)	
Mucositis/stomatitis†	199 (93·9%)	110 (51·9%)	9 (4·2%)	194 (93·3%)	116 (55.8%)	13 (6.3%)	
Dysphagia	134 (63·2%)	63 (29.7%)	3 (1.4%)	136 (65·4%)	54 (26.0%)	1 (0.5%)	
Xerostomia‡	150 (70.8%)	6 (2.8%)	0 (0%)	150 (72·1%)	10 (4.8%)	0 (0%)	
Acneiform rash§	21 (9.9%)	3 (1.4%)	0 (0%)	174 (83.7%)	35(16.8%)	1 (0.5%)	
Infusion reaction¶	4 (1·9%)	0 (0%)	0 (0%)	32 (15·4%)	6 (2·9%)	2 (1.0%)	
Table 2: Most common adverse events							

Bonner et al J NEJM, 2006

TREATMENT-RELATED ADVERSE EFFECTS


Treatment related adverse effects

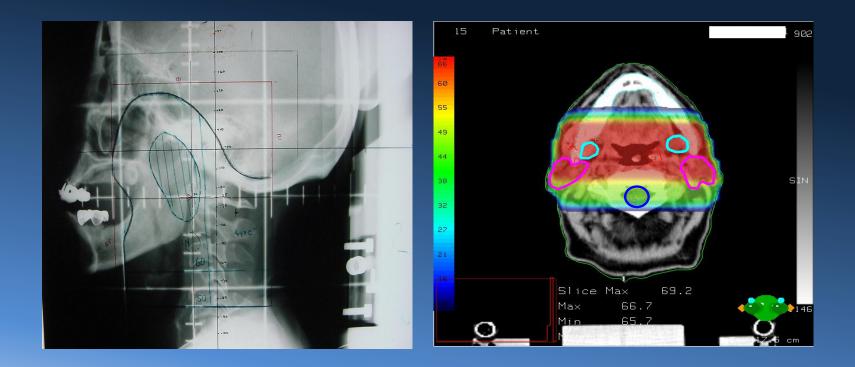
Trotti A et al Lancet Oncol, 2007

Treatment related adverse effects

Analysis of 230 patients receiving CRT in 3 studies (RTOG 91-11, 97-03, 99-14)

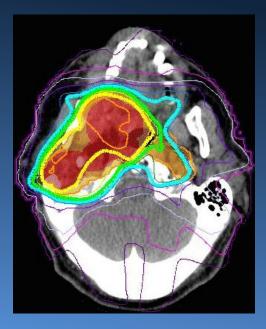
Machtay M et al J Clin Oncol, 2008

Treatment related adverse effects

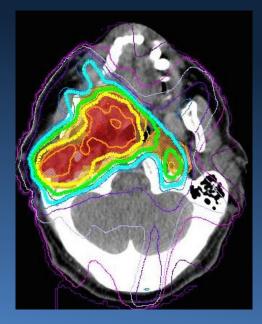


T4N2M0 Nasopharyngeal carcinoma (2008) Concurrent chemotherapy + IMRT (70Gy)

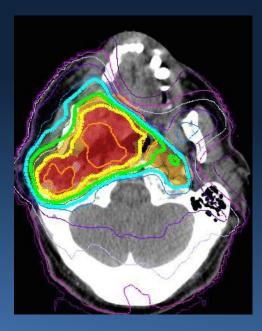
RADIOTHERAPY DELIVERY & IMAGE GUIDANCE


Radiotherapy delivery

2 Dimensional

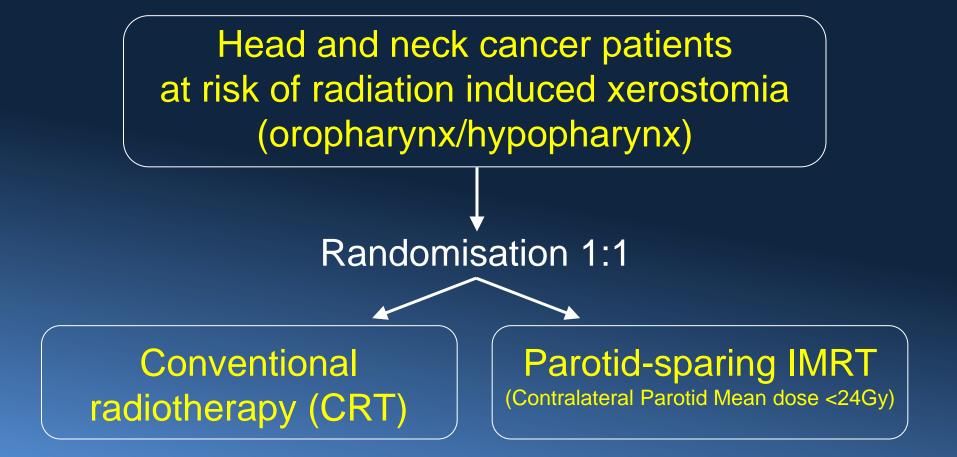


Radiotherapy delivery


3D CT

IMRT

Dynamic IMRT


Dose Volume Histogram Oral Cavity

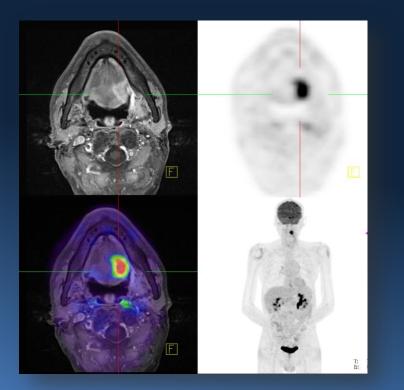
1.0, 0.9 0.8 0.7 0.6 0.5 ----Vorm. Volume 0.4 0.3 0.2 0.1 0.Q 20 50 80 60 70 10 40 Dose (Gy)

ROI Statistic	cs					
Line Type	ROI	Trial or Record	Min.	Max.	Mean	Std. Dev.
\$ <u> </u>	Oral Cavity	3DCRT 70	11.53	73.57	51.05	20.47
<u>م</u>	Oral Cavity	IMRT	5.42	74.30	42.50	21.06
÷ —	Oral Cavity	Trial_1 VMAT	4.66	71.83	34.61	24.48

VMAT —— IMRT —— 3D CT ——


PARSPORT Trial Design

65Gy/30 fractions in 6 weeks - radical and post-operative R1/R2 60Gy/30 fractions in 6 weeks - post-operative R0


Nutting CM et al Lancet Oncol, 2011

LENT SOMA Subjective Xerostomia rates

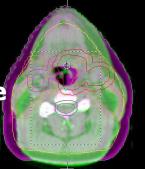
Nutting CM et al Lancet Oncol, 2011

Improved tumour delineation

Molecular imaging (FDG PET) - structural imaging (CT/MRI)

Image guided radiotherapy

Cone beam CT (CBCT)


- Efficient in-room 3D treatment verification
- Assess and account for translation and rotation
- Ability to match to predefined region and correct around a point of interest
- Monitoring of anatomical change during treatment
- Use for adaptive radiotherapy

Volumetric Modulate Arc Therapy Delivery

Linac with CBCT

Week 5 CBCT image

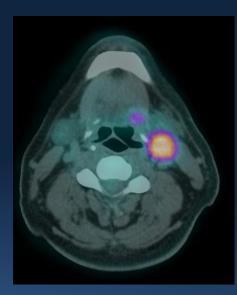
POST-THERAPY ASSESSMENT

PET in the post-therapy assessment of residual nodes

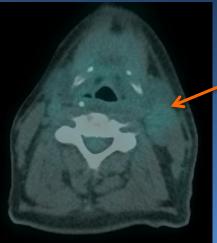
Negative Predictive Value

12-16 week restaging PET 95-97%

Yao et al IJROBP 2005 Porceddu SV et al HN 2005


Brisbane PET Protocol Study

Post-therapy PET guided management of the neck


- regardless of the presence of *residual* nodal abnormality
- 2 year total nodal failures 3.5%
- median residual node 1.5cm (1.0-4.0cm)

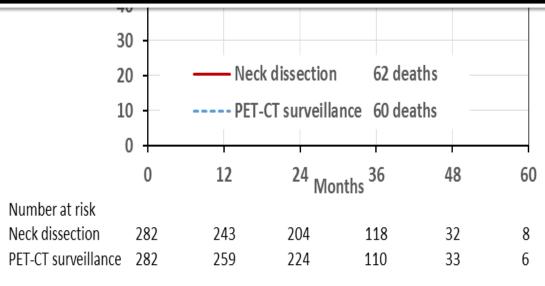
Safe to observe neck if residual nodal abnormality is PET negative

Porceddu SV et al Head Neck 2011

Pre-treatment PET

12 week post-therapy PET The NEW ENGLAND JOURNAL of MEDICINE

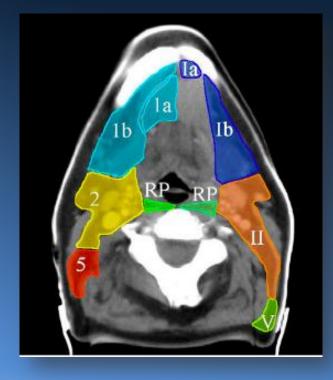
ORIGINAL ARTICLE

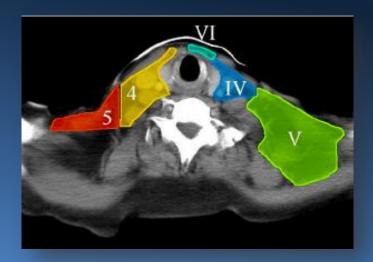

PET-CT Surveillance versus Neck Dissection in Advanced Head and Neck Cancer

Hisham Mehanna, Ph.D., Wai-Lup Wong, F.R.C.R., Christopher C. McConkey, Ph.D., Joy K. Rahman, M.Sc., Max Robinson, Ph.D., Andrew G.J. Hartley, F.R.C.R., Christopher Nutting, Ph.D., Ned Powell, Ph.D., Hoda Al-Booz, F.R.C.R., Martin Robinson, F.R.C.R., Elizabeth Junor, F.R.C.R., Mohammed Rizwanullah, F.R.C.R., Sandra V. von Zeidler, Ph.D., Hulya Wieshmann, F.R.C.R., Claire Hulme, Ph.D., Alison F. Smith, M.Sc., Peter Hall, Ph.D., Janet Dunn, Ph.D., for the PET-NECK Trial Management Group*

Overall survival

No difference in locoregional control or overall survival in patients undergoing PET-directed management vs planned neck dissection following chemo-RT

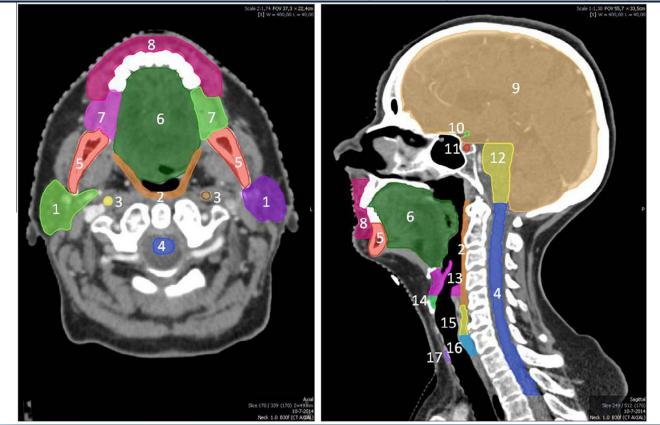



Mehanna H et al NEJM, 2016

CONTOURING CONSENSUS GUIDELINES

Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines ☆

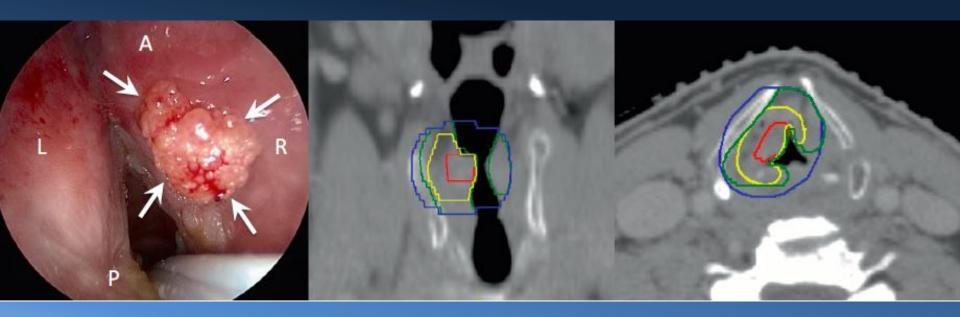
Vincent Grégoire^{a,*}, Kian Ang^b, Wilfried Budach^c, Cai Grau^d, Marc Hamoir^e, Johannes A. Langendijk^f, Anne Lee^g, Quynh-Thu Le^{h,i}, Philippe Maingon^j, Chris Nutting^k, Brian O'Sullivan¹, Sandro V. Porceddu^m, Benoit Lengeleⁿ



Gregoire V et al Radiother Oncol, 2014

CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines

Charlotte L. Brouwer^{a,*,1}, Roel J.H.M. Steenbakkers^{a,1}, Jean Bourhis^b, Wilfried Budach^c, Cai Grau^d, Vincent Grégoire^e, Marcel van Herk^f, Anne Lee^g, Philippe Maingon^h, Chris Nuttingⁱ, Brian O'Sullivan^j, Sandro V. Porceddu^k, David I. Rosenthal¹, Nanna M. Sijtsema^a, Johannes A. Langendijk^a

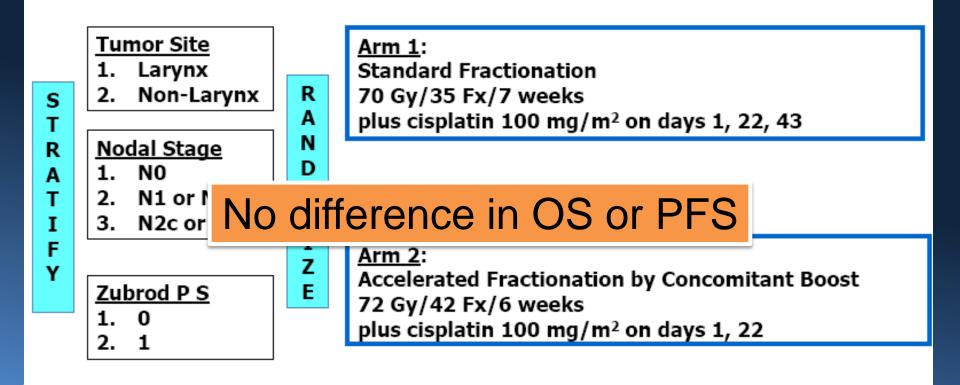


Brouwer CL et al Radiother Oncol, 2015

Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines

Vincent Grégoire^{a,*}, Mererid Evans^b, Quynh-Thu Le^c, Jean Bourhis^d, Volker Budach^e, Amy Chen^f, Abraham Eisbruch^g, Mei Feng^h, Jordi Giraltⁱ, Tejpal Gupta^j, Marc Hamoir^k, Juliana K. Helito¹, Chaosu Hu^m, Keith Hunterⁿ, Jorgen Johansen^o, Johannes Kaanders^p, Sarbani Ghosh Laskar^j, Anne Lee^q, Philippe Maingon^r, Antti Mäkitie^s, Francesco Micciche'^t, Piero Nicolai^u, Brian O'Sullivan^v, Adela Poitevin^w, Sandro Porceddu^x, Krzysztof Składowski^y, Silke Tribius^z, John Waldron^v, Joseph Wee^{aa}, Min Yao^{ab}, Sue S. Yom^{ac}, Frank Zimmermann^{ad}, Cai Grau^{ae}

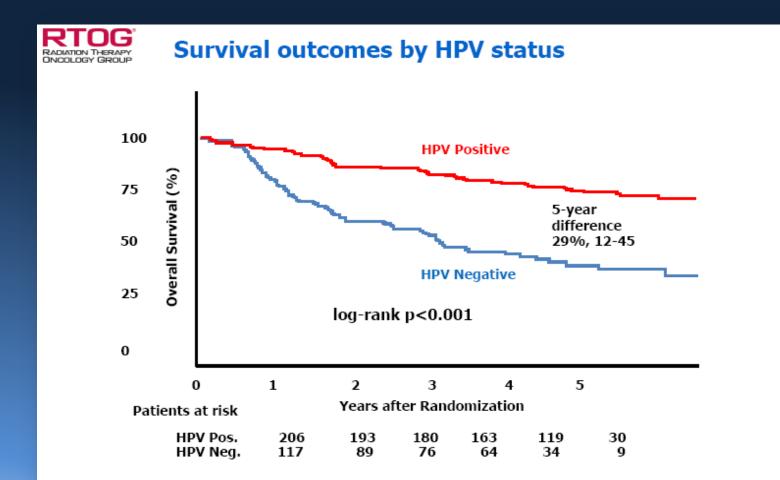
Gregoire V et al Radiother Oncol, 2018


BIOLOGIC INSIGHTS & DE-ESCALATION STRATEGIES

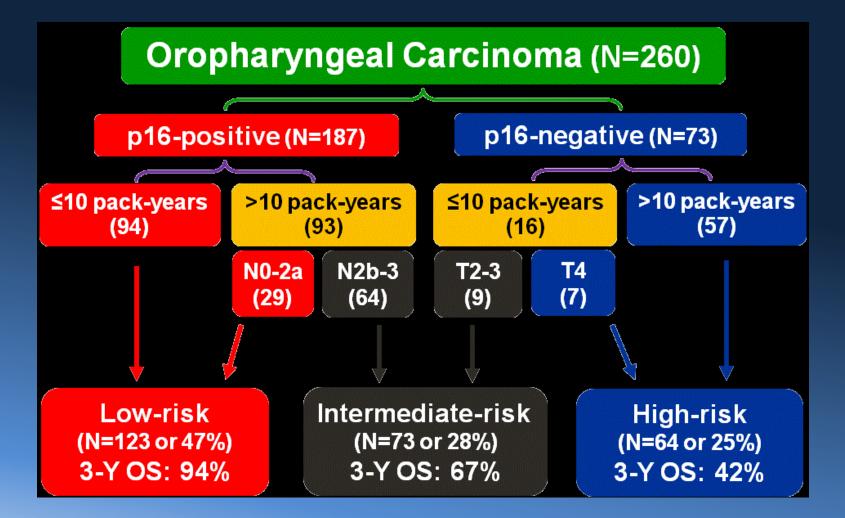
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

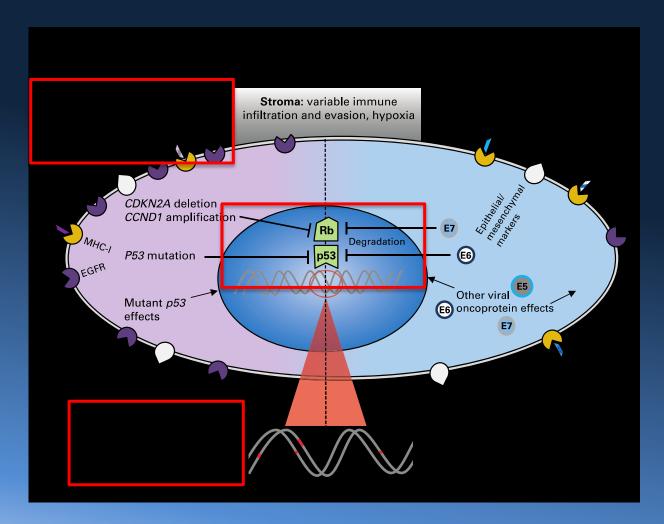
Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer


K. Kian Ang, M.D., Ph.D., Jonathan Harris, M.S., Richard Wheeler, M.D., Randal Weber, M.D., David I. Rosenthal, M.D., Phuc Felix Nguyen-Tân, M.D., William H. Westra, M.D., Christine H. Chung, M.D., Richard C. Jordan, D.D.S., Ph.D., Charles Lu, M.D., Harold Kim, M.D., Rita Axelrod, M.D., C. Craig Silverman, M.D., Kevin P. Redmond, M.D., and Maura L. Gillison, M.D., Ph.D. **Radiation Therapy Oncology Group 0129**

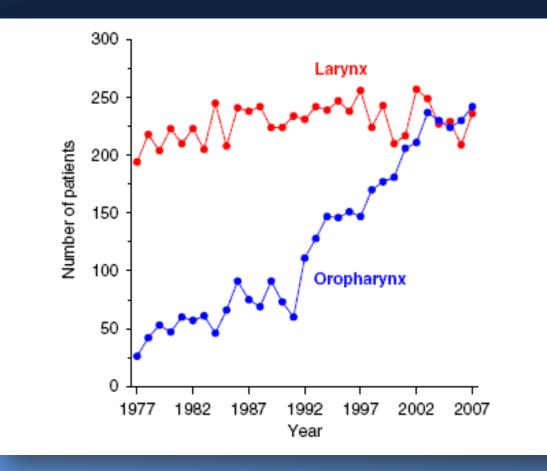
• Oropharyngeal 433


Gillison M. ASCO 2009, Orlando, abstract # 6003

RTOG 0129


Gillison M. ASCO 2009, Orlando, abstract # 6003

RTOG 0129


KK Ang et al NEJM, 2010

Biologic differences OPC based on HPV status

Adapted from Dillon & Harrington JCO, 2015

Rising incidence of HPV+ OPC

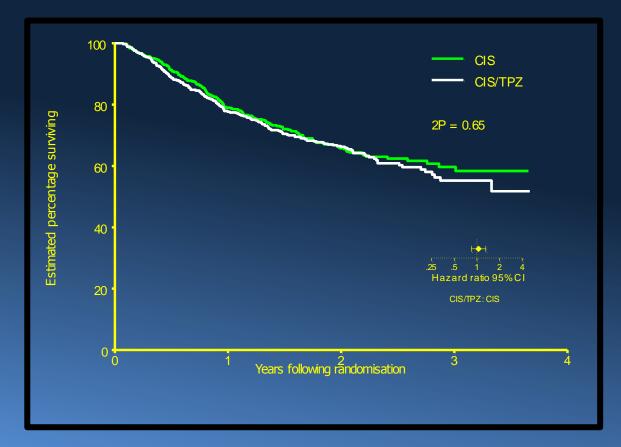
Larsen P Radiother Oncol, 2010

De-escalation strategies

- Substitute biologic agent for cytotoxic chemotherapy
- Omit or reduce chemotherapy
- Pending de-escalation studies
- Surgical excision and stratify further treatment based on pathologic findings

RADIOTHERAPY QUALITY ASSURANCE

VOLUME 28 · NUMBER 18 · JUNE 20 2010


JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

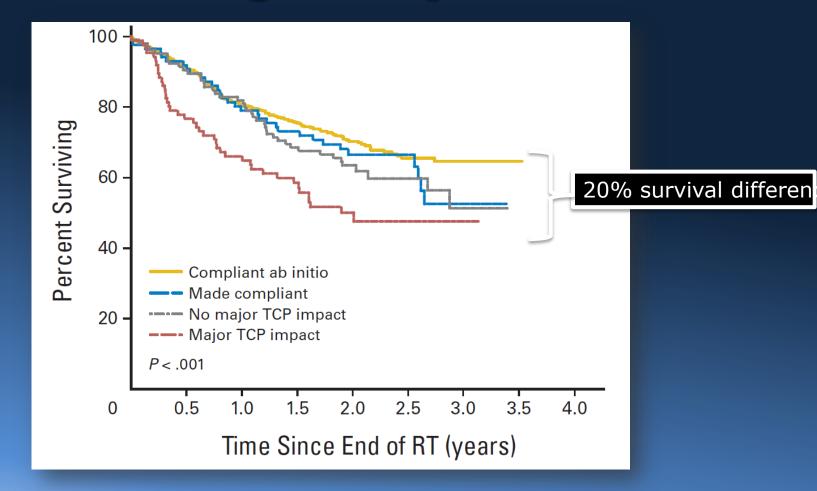
Tirapazamine, Cisplatin, and Radiation Versus Cisplatin and Radiation for Advanced Squamous Cell Carcinoma of the Head and Neck (TROG 02.02, HeadSTART): A Phase III Trial of the Trans-Tasman Radiation Oncology Group

Danny Rischin, Lester J. Peters, Brian O'Sullivan, Jordi Giralt, Richard Fisher, Kally Yuen, Andy Trotti, Jacques Bernier, Jean Bourhis, Jolie Ringash, Michael Henke, and Lizbeth Kenny

Overall Survival TROG 02.02

Rischin D et al J Clinic Oncol, 2010

VOLUME 28 · NUMBER 18 · JUNE 20 2010

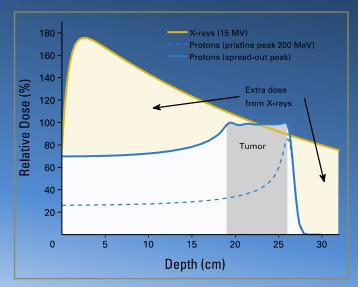

JOURNAL OF CLINICAL ONCOLOGY

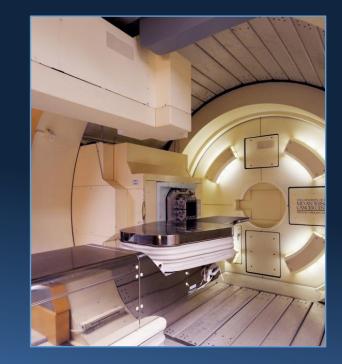
ORIGINAL REPORT

Critical Impact of Radiotherapy Protocol Compliance and Quality in the Treatment of Advanced Head and Neck Cancer: Results From TROG 02.02

Lester J. Peters, Brian O'Sullivan, Jordi Giralt, Thomas J. Fitzgerald, Andy Trotti, Jacques Bernier, Jean Bourhis, Kally Yuen, Richard Fisher, and Danny Rischin

Survival based on RT Quality


Peters LJ et al JCO, 2010


HEAVY PARTICLE RADIATION THERAPY

PROTON THERAPY

Proton Therapy Unit

- Heavy-particle radiation therapy
- Differing physical properties to photons

Clinical implications

- Less integral dose
- Negligible dose beyond the Bragg Peak

Re-treatment following previous RT Salivary gland tumours

ChemoRT/checkpoint inhibitor trials

	Eligible	Drug	Arm 1	Arm 2	Endpoint
JAVELIN 100 (Pfizer)	Locally advanced head and neck cancer	Avelumab	Avelumab + Cisplatin chemoradiation	Placebo + Cisplatin chemoradiation	PFS
KEYNOTE 412 (Merck)	Locally advanced head and neck cancer	Pembrolizumab	Pembrolizumab + Cisplatin chemoradiation	Placebo + Cisplatin chemoradiation	EFS
NCT03349710 (Bristol- MyersSquibb)	Locally advanced head and neck cancer	Nivolumab	Nivolumab + Cetuximab/Cisplatin + radiation	Placebo + Cetuximab/Cisplatin + radiation	EFS
NCT03452137 (Roche)	Locally advanced head and neck cancer	Atezolizumab	Standard definitive local therapy (multi-modality) followed by adjuvant atezolizumab	Standard definitive local therapy (multi-modality) followed by placebo	EFS

Concluding remarks

- Substantial improvement in locoregional control, modest improvement in survival & an overall reduction in toxicity with radiotherapy due to
 - role of concomitant chemotherapy
 - improved technologies & techniques (IMRT)
 - improved quality assurance of planning & delivery
 - image guidecancer
 - universally accepted contouring guidelines